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We study the limiting behavior of the M-estimators of parameters for a spatial unilat-
eral autoregressive model with independent and identically distributed innovations
in the domain of attraction of a stable law with index α ∈ (0,2]. Both stationary
and unit root models and some extensions are considered. It is also shown that self-
normalized M-estimators are asymptotically normal. A numerical example and a
simulation study are also given.

1. INTRODUCTION

Consider the doubly geometric spatial autoregressive (AR) model, introduced by
Martin (1979),

Zi j = φ1 Zi−1, j +φ2 Zi, j−1 −φ1φ2 Zi−1, j−1 + εi j , (1)

where {εi j = εi j (φ1,φ2) : i, j = 1, . . . ,n} is a sequence of independent and iden-
tically distributed (i.i.d.) random variables with Zi j = 0 when i ∧ j ≤ 0. In this
paper, we study the weak limit behavior of the M-estimators for the parameters
in model (1) when {εi j } is in the domain of attraction of a symmetric stable law
with index of stability α, 0 < α ≤ 2 (denoted by DS(α)). Both stationary and unit
root models are considered, and it is shown that asymptotically, the distributions
of M-estimators are functionals of a stable sheet (Resnick, 1986). For innovations
in DS(α), self-normalized M-estimates are asymptotically normal.

Spatial models (e.g., model (1)) appear in many applications such as geogra-
phy, agriculture, geology, biology, and economics. See, e.g., the work of Whittle

This paper is supported by the Natural Sciences and Engineering Research Council of Canada. The first author
was also supported by the Central Bank of Iran. The authors also are greatly indebted to two anonymous referees
for several helpful comments. Address correspondence to Mahmoud Zarepour, Department of Mathematics and
Statistics, University of Ottawa, 585 King Edward Street P.O. Box 450 STN A, Ottawa, Ontario, K1N 6N5, Canada;
e-mail: zarepour@uottawa.ca.

c© Cambridge University Press 2010 0266-4666/10 $15.00 1663



www.manaraa.com

1664 S.M. ROKNOSSADATI AND M. ZAREPOUR

(1954), Kempton and Howes (1981), Martin (1990), Cullis and Gleeson (1991),
and Basu and Reinsel (1993, 1994) in the study of agricultural field trials, Jain
(1981), Geman and Geman (1984), Chellappa (1985), and Dass and Nair (2003)
in image processing, Tjøstheim (1978, 1981) in system theory, and Bronars and
Jansen (1987) in economics. Asymptotic properties of the spatial unilateral AR
models, which are our interest in this paper, have been investigated by several
authors. Martin (1979) introduces the symmetrically reflective spatial AR model
given in (1) and considers the maximum likelihood (ML) estimators when the
model is stationary. Martin (1990) considers model (1) thoroughly and argues that
these models have a broad range of applications in practical modeling. Tjøstheim
(1978, 1981, 1983) establishes the limiting behavior and consistency of the corre-
sponding Yule–Walker estimators. Basu and Reinsel (1992a, 1992b) show that in
the stationary setting ML estimators have less bias than the Yule–Walker estima-
tors proposed by Tjøstheim. They (1993, 1994) also define and study the spatial
unilateral autoregressive moving average (ARMA) model of first order. Several
estimators such as ML, restricted ML (REML), generalized least squares (GLS),
and ordinary least squares (OLS) for a stationary model are considered, and their
performances are compared. Bhattacharyya, Khalil, and Richardson (1996) in-
vestigate the asymptotic properties of the sequence of Gauss–Newton estimators
for model (1) with unit roots and with finite variance innovations showing the
bivariate normality of the weak limits. They also show that two estimators are
asymptotically independent.

The M-estimator (φ̂1, φ̂2) of (φ1,φ2) in (1) is the minimizer of the objective
function

g(φ1,φ2) =
n

∑
i=2

n

∑
j=2

ρ(Zi j −φ1 Zi−1, j −φ2 Zi, j−1 +φ1φ2 Zi−1, j−1) (2)

for some function ρ(·). Usually ρ(x) grows at a slower rate than x2 as |x | gets
large. Many of the developments in the M-estimation method can be found in the
books by Huber (1981) and Van de Geer (2000). For a univariate AR model with
infinite variance innovations, several studies have been carried out. For a general
AR process with infinite variance innovations when a stationary solution exists,
the M-estimates have been considered by Davis, Knight, and Liu (1992). They
point out that the M-estimators, similar to their counterpart, the least absolute
deviation (LAD) estimators, give less weight to the outliers when the distribution
of innovations belongs to the class of heavy tailed distributions. These estima-
tors essentially provide a faster rate of convergence in comparison with the other
usual estimators. Davis (1996) also develops the limit theory for M-estimates in
addition to Gauss–Newton estimates for ARMA processes with infinite variance
showing the dominance of M-estimates, asymptotically.

Spatial and spatiotemporal models are of interest to economists. As a specific
example in addition to the other existing evidence in the literature, Bronars and
Jansen (1987) investigate the time series and spatial pattern of unemployment
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rate fluctuations across labor market areas in the United States over the period
1977–1983. They employ both one-quadrant simultaneous (unilateral) and four-
quadrant conditional autoregressive models of spatial series over a regular lattice
and conclude that the two approaches yield similar results. We shall emphasize
that our approaches cover models with both infinite and finite variance innova-
tions, and that more research is required to examine the other possible applica-
tions of the proposed models in this paper in economics. Any economic index
linked to a geographical phenomenon can be analyzed by similar models.

The main results of the paper are stated in the forthcoming section and followed
by a numerical example and a simulation study in Section 3. Finally, the proofs
of the main theorems appear in the Appendix.

2. PRELIMINARIES AND MAIN RESULTS

Let {εi j : i, j = 1, . . . ,n} be a sequence of i.i.d. random variables in DS(α). Such
random variables have distributions with regularly varying tails, i.e.,

P(|ε11| > x) = x−α L(x),

where L(·) is a slowly varying function at infinity and

lim
x→∞

P(ε11 > x)

P(|ε11| > x)
= p0,

for some 0 < p0 ≤ 1. This implies that there exist constants an and bn such that
the stochastic process

Sn(t,s) = a−1
n

[nt]

∑
i=1

[ns]

∑
j=1

εi j − [n2ts]bn

converges in distribution to a process for 0 < t,s ≤ 1, where [x] stands for the
integer part of x . More precisely, let D2 be the space of càdlàg functions defined
on the unit square [0,1]×[0,1] and equipped with the metric introduced by Bickel
and Wichura (1971). Then

Sn(t,s) →d Sα(t,s), as n → ∞, (3)

in D2, where the limiting process is a stable sheet (Resnick, 1986) defined on a
regular rectangular grid in two dimensions. In fact, when (3) holds with either
α > 1 and E(ε11) = 0, or α < 1, or {εi j } have a symmetric distribution about 0
we say that {εi j } is in DS(α). This assumption is a standard assumption similar
to that made in Knight (1989) and Davis et al. (1992). In practical cases, α > 1,
and therefore symmetry is not required. Throughout the paper, →d and →p stand
for convergence in distribution and probability, respectively, with respect to the
relevant topologies. Integrals involving dSn , dSα , or dW are interpreted as Itô
stochastic integrals.
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It can be shown (Feller, 1971) that under (3), an = n2/α L(n), where 0 < α ≤ 2
and L(·) is a slowly varying function at infinity. We assume bn = 0. When α =
2, Sα(·, ·) is a Brownian sheet. When 0 < α < 2, a symmetric α-stable random
variable Sα has the series representation Sα = ∑∞

i=1 δi�
−1/α
i , where the δi ’s are

i.i.d. random variables with P(δ1 = 1) = P(δ1 = −1) = p0 = 1
2 . Here {�i } are

the arrival times of a Poisson process with Lebesgue mean measure independent
of {δi }. In fact, we have �i = E1 +·· ·+ Ei , i ≥ 1, where the Ei ’s are i.i.d. expo-
nential random variables with mean 1. For more details on the series representa-
tion see Le Page, Woodroofe, and Zinn (1981). More generally, the random field
X (·, ·) = ∑∞

i=1 δi�
−1/α
i Yi (·, ·) is an α-stable random field in D2 when {Yi } is an

i.i.d. sequence of D2-valued random fields independent of {δi } and {�i } as defined
before. If E(|Y (ti ,si )|α) < ∞, (ti ,si ) ∈ [0,1]2, i = 1, . . . ,k, then the Rk-valued
infinite series (X (t1,s1), . . . , X (tk,sk)) converges almost surely (a.s.) and repre-
sents a symmetric α-stable random vector. Refer to Davis and Mikosch (2008) for
examples on the necessary and sufficient conditions for the almost sure conver-
gence of the series in D2 and the space of continuous functions on [0,1]2 equipped
with the uniform topology. We will assume that the infinite series converges a.s.
in D2. For other extensive expositions on stable random variables, processes, and
related stochastic integrals that appear in the paper, consult Samorodnitsky and
Taqqu (1994).

Denote ψ(x) = dρ(x)/dx, ψ ′(x) = d2ρ(x)/dx2 and impose the following as-
sumptions on the function ρ(·) in (2), which are introduced for technical simplic-
ity in the proofs of the theorems.

Assumption A1. σ 2 := E
(
ψ2(ε11)

)
< ∞ and E (ψ(ε11)) = 0 if α ≥ 1; and

E(|ψ(ε11)|) < ∞ if α < 1.

Assumption A2. ψ(·) satisfies the Lipschitz continuity condition

|ψ(x)−ψ(y)| ≤ k1|x − y|λ1 ,

for some nonnegative constant k1 and λ1 > max(α −1,0).

Assumption A3. γ := E
(
ψ ′(ε11)

)
< ∞, and

|ψ ′(x)−ψ ′(y)| ≤ k2|x − y|λ2 ,

for some nonnegative constant k2 and 0 < λ2 < 1.

In practice, the objective function ψ(·) might have a countable number of dis-
continuity points. For example, consider the Huber’s loss function (Huber, 1981)
given by

ρH (x) =
{ 1

2 x2 if |x | ≤ c,

c|x |− 1
2 c2 if |x | > c
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for a known constant c. The loss function ρH (·) satisfies conditions A1–A3 if we
ignore the discontinuity of ψH (x) = dρH (x)/dx at ±c. Another example is the
loss function ρ(x) = 2 log(3 + x2). This sufficiently smooth loss function does
not satisfy A2 and A3 and is just locally convex around its global minimum.
However, this suffices to search out the unique solutions (the M-estimates). Ac-
tually, the performance of ρ(·) is as good as that of ρH (·), as shown in Section
3. Asymptotically there is no difference between different objective functions. In
practice, the optimal choice of ρ(·) is another challenging problem. Following the
simulation studies of Knight and Liu (see Davis et al., 1992, pp. 149–150), the
optimal choice for the case ρ(x) = |x |θ is obtained by taking θ = 1 for α ∈ [1,2)
and θ = α for α ∈ (0,1). Therefore, as mentioned before, a good loss function
is a convex function ρ with ρ(x)/x2 → 0 as x → ±∞. Note that the asymptotic
consistency does not depend on the form of the loss function given that it satisfies
Assumptions A1–A3.

Now, consider a general spatial unilateral model

Zi j =
∞
∑
k=0

∞
∑
l=0

ckl εi−k, j−l , (4)

where {εi j } is in DS(α) and {ckl} is a sequence of constants satisfying

∞
∑
k=0

∞
∑
l=0

|ckl |δ < ∞ for some δ < min(α,1). (5)

It can be shown (see Resnick, 1987, Lem. 4.24) that under this condition, the
series in (4) converges a.s. and

lim
x→∞

P(|Z11| > x)

P(|ε11| > x)
=

∞
∑
k=0

∞
∑
l=0

|ckl |α.

Therefore, the spatial unilateral AR(p,q) model

Zi j =
p

∑
k=0

q

∑
l=0

βkl Zi−k, j−l + εi j , β00 = 0 (6)

with {εi j } in DS(α) has a stationary solution if it can be rewritten in the form of
(4) where {ckl} satisfies (5). As an example, note that model (1) is a special case
of (6) with p = q = 1, β10 = φ1, β01 = φ2, and β11 = −φ1φ2 and that

Zi j = φ1 Zi−1, j +φ2 Zi, j−1 −φ1φ2 Zi−1, j−1 + εi j

=
∞
∑
k=0

∞
∑
l=0

∞
∑
r=0

(k + l + r)!

k!l!r !
φk

1φl
2(−φ1φ2)

rεi−k−r, j−l−r

=
∞
∑
k=0

∞
∑
l=0

φk
1φl

2εi−k, j−l
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=
i

∑
k=1

j

∑
l=1

φi−k
1 φ

j−l
2 εk,l when Zi j = 0 for i ∧ j ≤ 0

is a unilateral model. Notice that the coefficient of Zi−1, j−1 that is set to −φ1φ2
allows the model to admit a causal moving average (MA) representation, whereas
AR random fields may not generally have such representation. Also see Section 3
on a numerical example and simulation. Therefore by (5) to ensure the existence
of the stationary representation we shall have for 0 < α < 2,
∞
∑
k=0

∞
∑
l=0

∣∣∣φk
1φl

2

∣∣∣δ < ∞ for some δ < min(α,1).

For α = 2, see Proposition 1 of Basu and Reinsel (1993).
The following theorem deals with the M-estimators of the parameters of the

general stationary model given in (6). Following Davis et al. (1992), recall that the
M-estimate, β̂ββ = (β̂01, β̂02, . . . , β̂0q , . . . , β̂p0, β̂p1, . . . , β̂pq)′, ofβββ = (β01, . . . ,βpq)′
minimizes the objective function

n

∑
i=p+1

n

∑
j=q+1

ρ(Zi j −ϕ10 Zi−1, j −ϕ01 Zi, j−1 −ϕ11 Zi−1, j−1 −·· ·−ϕpq Zi−p, j−q)

with respect to {ϕi j }. This is equivalent to minimizing the sequence of stochastic
processes

Wn(uuu) =
n

∑
i=p+1

n

∑
j=q+1

[
ρ(Zi j −ϕ10 Zi−1, j −ϕ01 Zi, j−1

−ϕ11 Zi−1, j−1 −·· ·−ϕpq Zi−p, j−q)−ρ(εi j )
]

=
n

∑
i=p+1

n

∑
j=q+1

[
ρ(εi j −u10a−1

n Zi−1, j −u01a−1
n Zi, j−1

−u11a−1
n Zi−1, j−1 −·· ·−upqa−1

n Zi−p, j−q)−ρ(εi j )
]
,(7)

where ui j = an(ϕi j −βi j ) ∈ R, i = 0,1, . . . , p, j = 0,1, . . . ,q.

The minimizer of the process Wn(·), i.e., an(β̂ββ −βββ), has a weak limit that is
the minimizer of the process W (·) given in the following theorem. Of course, we
assume that Wn(·) converges and the minimizer of Wn(·) exists and it is unique
with probability 1 (see also Davis et al., 1992, Rmks. 1 and 2).

THEOREM 1. Consider the stationary spatial unilateral model (6) with {εi j }
in DS(α), 0 < α < 2 and suppose that Assumptions A1 and A2 hold. Then on
C
(
R

p+q+pq
)
, Wn(·) →d W (·), where

W (uuu) =
∞
∑
i=1

∞
∑
j=1

∞
∑
k=1

[
ρ
(
εki j − (u10ci−1, j +u01ci, j−1 +u11ci−1, j−1

+·· ·+upqci−p, j−q)δk�
−1/α
k

)−ρ(εki j )
]

(8)
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with {ckl} the same as in (4). Here εki j
d= ε11, and δk and �k are defined as be-

fore, and C
(
R

p+q+pq
)

is the metric space of continuous functions on Rp+q+pq

equipped with the uniform metric.

Note that we cannot find a closed form for the minimizer of W (·) in (8). Also,
notice that if Assumption A3 holds with γ > 0 then ρ(·) is convex and the limiting
process in Theorem 1 has an almost sure unique minimizer. One may replace A2
by A3 in Theorem 1, but A2 is a weaker assumption. A similar theorem can
be stated for the special case when ρ(x) = |x |, corresponding to LAD estimators,
provided we make some assumptions on ε11 similar to those made in Theorem 3.4
of Davis (1996).

In the next theorem, we investigate the asymptotic behavior of M-estimators of
the parameters in the spatial unilateral model given in (1) when the model has a
unit root. We consider two cases: (i) φ1 = 1 and |φ2| < 1 and (ii) φ1 = φ2 = 1.
The limits are functionals of the α-stable sheet (Itô stochastic integrals) in (3). As
in Knight (1989), to make sure that an almost sure unique limit exists we assume
the convexity of the function ρ(·).

THEOREM 2. Consider model (1) with {εi j } in DS(α), 0 < α < 2 and suppose
that the loss function ρ(·) is strictly convex. Denote (φ̂1, φ̂2) to be the M-estimator
of (φ1,φ2) in that model. Then under Assumptions A1–A3,

(i) if φ1 = 1 and |φ2| < 1,

(
an

√
n (φ̂1 −1)

an(φ̂2 −φ2)

)
→d ξ :=

⎛
⎝ σ

∫ 1
0
∫ 1

0 Sα(t1,t2)dW (t1,t2)

γ
∫ 1

0
∫ 1

0 S2
α(t1,t2)dt1dt2

arg min Z(u)

⎞
⎠ ,

where

Z(u) =
∞
∑
i=1

∞
∑
j=1

[
ρ
(
εi j −uφ

j−1
2 δi�

−1/α
i

)−ρ(εi j )
]
,

(ii) and if φ1 = φ2 = 1,

an
√

n

(
φ̂1 −1

φ̂2 −1

)
→d η := σ

γ

⎛
⎜⎝
∫ 1

0
∫ 1

0 Sα(t1,t2)dW (t1,t2)∫ 1
0
∫ 1

0 S2
α(t1,t2)dt1dt2∫ 1

0
∫ 1

0 Sα(t1,t2)dW (t1,t2)∫ 1
0
∫ 1

0 S2
α(t1,t2)dt1dt2

⎞
⎟⎠ , (9)

where Sα(·, ·) is the α-stable sheet and W (·, ·) is a standard Brownian
sheet.

Remark 1. When φ1 = 1 and |φ2| < 1, distribution of ξ is not necessarily
symmetric, whereas for the second case we observe a symmetric distribution.
Similar to the results given by Knight (1989) and Remark 3 of Zarepour and
Roknossadati (2008) it is possible to give self-normalizing coefficients for the
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M-estimators in Theorem 2. More precisely, using the Resnick and Greenwoods
result (Resnick and Greenwood, 1979, Thms. 1 and 3) when ε11 is in DS(α), 0 <
α ≤ 2, we get the following, results.

(a) If φ1 = 1 and |φ2| < 1,(
n

∑
i=2

n

∑
j=1

X2
i−1, j

)1/2(
φ̂1 −1

)
→d N

(
0,

σ 2

γ 2

)
,

(b) and if φ1 = φ2 = 1,⎛
⎝
√

∑n
i=2 ∑n

j=1 X2
i−1, j 0

0
√

∑n
i=1 ∑n

j=2 Y 2
i, j−1

⎞
⎠( φ̂1 −1

φ̂2 −1

)
→d N (0,���),

(10)

where ��� = diag
(
σ 2/γ 2,σ 2/γ 2

)
, Xi j := Zi j −φ2 Zi, j−1, and Yi j := Zi j −

φ1 Zi−1, j .
Because (φ̂1, φ̂2) is a consistent estimator of (φ1,φ2), Xi−1, j and Yi, j−1

can be replaced by X̂i−1, j and Ŷi, j−1 where X̂i j := Zi j − φ̂2 Zi, j−1, and
Ŷi j := Zi j − φ̂1 Zi−1, j .

Again a similar result can be derived for the special case when ρ(x) = |x | using
techniques similar to those employed in Knight (1989).

Remark 2. The limiting distributions established in Theorems 1 and 2 depend
on the index of stability, α. However, it is generally not known in application.
There are many different techniques to estimate the tail index. The most preva-
lent techniques are quantile-quantile estimation and plotting, Hill estimation and
plotting, and Pickands estimation. Although the Hill and Pickands estimators are
consistent, there are some difficulties when using these estimators in practice. For
instance, the Hill estimator usually works well when the underlying distribution is
close to Pareto. For discussion on these difficulties and more on choosing the right
estimator consult Resnick (2007) and references therein. Another related problem
is the choice of the normalizing constants an . One way to avoid estimating an

is to use bootstrap. Another standard solution is the self-normalization. This so-
lution is not applicable for the stationary process given in Theorem 1. However,
the self-normalized M-estimator version for a nonstationary AR(1,1) is discussed
in Remark 1. The advantage of using the self-normalized coefficients is the fact
that the limiting vectors in Remark 1 have normal distribution in both finite and
infinite variance; therefore, it is not necessary to estimate the value of the tail
index. Normality of the limiting distribution simplifies construction of confidence
intervals. See the normal quantile plots in Figure 1 and the density and contour
plots in Figure 2. In the infinite variance stationary case, in practice, we can as-
sume errors are Pareto type or in the normal domain of attraction of a stable law
(L(n) = 1).
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FIGURE 1. Normal Q-Q plots for the marginals of the limiting vector with fixed (parts
(a) and (b)) and random normalization (parts (c) and (d)) based on LAD estimates for the
parameters in model (1) with normal noise and n = 60. The replication size is 1,000.

Remark 3. The convergence rate in (9) when innovations have finite variance is
the same as that given in Bhattacharyya et al. (1996) and Bhattacharyya, Richard-
son, and Franklin (1997), i.e., n3/2. However, for an AR(1,1) model with infinite
variance innovations the LAD and M-estimates have a higher rate of consistency
compared to the OLS and Gauss–Newton estimates.

3. A NUMERICAL EXAMPLE AND SIMULATION

To investigate the performance of the M-estimation approach proposed in the
preceding section, a numerical example for Theorem 1 and some simulations re-
garding the unit root model are presented. We first consider the yield of barley
(in kilograms) data set from a 7 × 28 regular grid given in Kempton and Howes
(1981). This data set has also been analyzed by Basu and Reinsel (1993). We
consider two loss functions, Huber and LAD. Because the data have a normal
distribution, the α = 2 is taken. Results tabulated in Tables 1 and 2 show that
the doubly geometric spatial AR model given in (1) with a constant added to the
model is more accurate than a general model with −φ1φ2 replaced by φ3. Such a
model is a special case of the unilateral first-order ARMA model of the quadrant
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FIGURE 2. Density and contour plot for the self-normalized LAD estimates given in
Figure 1.

type introduced by Basu and Reinsel (1993). Notice that the limit theory for this
general model is the same as that for model (6) of Section 2 with different {ckl}.
From Table 1 it can also be seen that the performance of the fit by LAD and Hu-
ber’s loss functions is as good as that of the ML fit reported by Basu and Reinsel
(1993).

A simulation study is undertaken to investigate the result of Theorem 2 of
Section 2. We present the results for five parameter settings for the index of
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TABLE 1. M-estimates of the parameters for model (1) based on the yield of
barley data (in kilograms) obtained from Kempton and Howes (1981)

Const. φ̂1 φ̂2 −φ̂1φ̂2 σ̂ 2

Huber 2.732 0.246 0.828 −0.204 0.0322
LAD 2.780 0.247 0.836 −0.207 0.0322
ML 2.627 0.241 0.812 −0.196 0.032

TABLE 2. M-estimates of the parameters for model (1) with −φ1φ2 replaced by
φ3 based on the yield of barley data (in kilograms) obtained from Kempton and
Howes (1981)

Const. φ̂1 φ̂2 φ̂3(�= −φ̂1φ̂2) σ̂ 2

Huber 2.731 0.241 0.794 −0.106 0.0332
LAD 2.791 0.230 0.833 −0.107 0.0329
ML 2.663 0.240 0.796 −0.108 0.032

stability α = 2,1.8,1.5,1,0.5. The unit root model (1) with φ1 = φ2 = 1 and
symmetric α-stable errors on an n × n regular grid with different values of n are
generated. The replication size of 1,000 is chosen, and both mean and standard
deviation of M-estimates of φ1 −1 are calculated. The simulation results are sum-
marized in Table 3 with Huber’s loss function and in Table 4 with the loss function
ρ(x) = 2log(x2 + 3). Although the latter is just convex around its global mini-
mum, the results tabulated in Table 4 are quite satisfactory. As n gets large, the
M-estimates are close to the actual values for both choices for the loss function
with better rates of convergence as α gets smaller.

To explore the bivariate normality of the limits with the random normalization
factors given in (10), we consider a simulated unit root model (1) with normal in-
novations using a replication size of 1,000 and ρ(x) = |x | as the loss function in
the M-estimation. To get the normality we need to take n = 60. Figure 1 portrays
the normal quantile-quantile plots for the marginals of the limiting vectors in (9)
(Figures 1a and 1b) and (10) (Figures 1c and 1d) illustrating a significant devia-
tion from normality and the normality of marginals after using fixed and random
normalizing coefficients. The bivariate normality of the data after using a random
normalizer can be seen in Figure 2. Notice that the contour plot confirms that the
marginal normal variables of the limiting vector in (10) are independent.

Some simulations, which are not reported here, demonstrate that for α < 2 to
have normality we need to take n significantly large. For instance, for a model
with Cauchy innovations (α = 1) a sample size of n = 500 suffices to get bivariate
normality.
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TABLE 3. Mean and mean standard deviations (in parentheses) for M-estimates
of the parameter (φ1 − 1) for the unit root model (1) with φ1 = φ2 = 1 using
Huber’s loss function with different α-stable noises. The replication size is 1,000.

Index of stability α
n 2 1.8 1.5 1 0.5

5 −0.0202 −0.0165 −0.0138 −0.0113 −0.0130
(0.0224) (0.0200) (0.0200) (0.0641) (0.1136)

10 −0.0034 −0.0028 −0.0016 −0.0004 −0.0033
(0.0038) (0.0036) (0.0026) (0.0009) (0.0566)

15 −0.0011 −0.0009 −0.0005 −0.0001 −0.0044
(0.0015) (0.0011) (0.0009) (0.0002) (0.0608)

20 −0.0006 −0.0004 −0.0002 −0.0000 −0.0001
(0.0007) (0.0006) (0.0004) (0.0003) (0.0019)

25 −0.0003 −0.0002 −0.0001 −0.0000 −0.0000
(0.0004) (0.0003) (0.0002) (0.0002) (0.0010)

30 −0.0002 −0.0001 −0.0000 −0.0000 −0.0000
(0.0003) (0.0002) (0.0001) (0.0001) (0.0158)

TABLE 4. Mean and mean standard deviations (in parentheses) for M-estimates
of the parameter (φ1 −1) for the unit root model (1) with φ1 = φ2 = 1 using the
loss function ρ(x) = 2log(x2 +3) with different α-stable noises. The replication
size is 1,000.

Index of stability α
n 2 1.8 1.5 1 0.5

5 −0.0128 −0.0106 −0.0087 −0.0029 0.0042
(0.0173) (0.0141) (0.0140) (0.0069) (0.0105)

10 −0.0017 −0.0013 −0.0007 −0.0002 0.0002
(0.0018) (0.0016) (0.0014) (0.0008) (0.0004)

15 −0.0006 −0.0004 −0.0002 −0.0000 0.0000
(0.0006) (0.0005) (0.0004) (0.0004) (0.0001)

20 −0.0002 −0.0002 −0.0000 −0.0000 0.0000
(0.0003) (0.0003) (0.0001) (0.0004) (0.0000)

25 −0.0001 −0.0000 −0.0000 −0.0000 0.0000
(0.0001) (0.0001) (0.0000) (0.0002) (0.0000)

30 −0.0000 −0.0000 −0.0000 −0.0000 0.0000
(0.0000) (0.0000) (0.0000) (0.0001) (0.0000)
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APPENDIX

Suppose (�,A, P) is a probability space. Let M+(E) (and Mp(E)) be the space of
Radon (and point) measures on a nice space E that is a locally compact topological space
with countable base. A measure μ is called Radon if μ(K ) < ∞ for any compact sub-
set K in E. The space M+(E) is a complete separable metric space equipped with the
vague topology (metrizable as a complete and separable metric space, Resnick, 2007), and
Mp(E) is a closed subset of M+(E). For μ,μn ∈ M+(E), let μn →v μ denote the vague
convergence of μn to μ; i.e., for all f ∈ C+

K (E), we have

μn( f ) :=
∫
E

f (x)μn(dx) → μ( f ) :=
∫
E

f (x)μ(dx)

as n → ∞, where

C+
K (E) = { f : E �−→ R+ : f is continuous with compact support}.

In M+(E), the measures {μn(·) : n = 1,2, ...} converge weakly (μn →d μ) if and only if
for any family { fi } with fi ∈ C+

K (E), we have

(μn( fi ), i ≥ 1) →d (μ( fi ), i ≥ 1)

in R∞, i.e., weak convergence occurs with respect to vague topology. In practice, one
assume a sequence { fi } and proves R∞ convergence. This reduces to proving finite-
dimensional convergence.

A point process N is a map N : (�,A) �→ (Mp(E),Mp(E)) with state space E, where
Mp(E) is the Borel σ -algebra of subsets of Mp(E) generated by open sets in vague topol-
ogy. As an example, the weak limits in Proposition 1 and Corollary 1 later in this Appendix
are point processes. For more details on random measures and point processes see Kallen-
berg (1983) and Resnick (2007).

To get ready to prove Theorem 1 we need to provide two propositions that are similar to
Proposition A.1 and Proposition A.2 of Davis et al. (1992). The proof of Proposition A.2
in Davis et al. (1992) extends in a straightforward way to MA random fields and therefore
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is given without proof. In what follows, the sequences of i.i.d. random variables {εikl },
with ε111

d= ε11, {δi }, and {�i } are as specified in Section 2, and all the sequences are
mutually independent. We denote by Mp(R× (R\{0})) the set of point processes defined
on E = R× (R\{0}) where R = [−∞,∞] equipped with vague topology. Also, let E be
the σ -algebra generated by the open subsets of E. For each x in E, define a set function
εx (·) on E by

εx (A) =
{

1 if x ∈ A,

0 otherwise,

where A ∈ E .

PROPOSITION 1. Suppose that the sequence of random variables {Zi j } is given by
(4) with {εi j } in DS(α). Then

n

∑
i=1

n

∑
j=1

ε
(εi j ,a

−1
n Zi j )

→d

∞
∑
i=1

∞
∑
l=1

∞
∑

k=1
ε
(εikl ,cklδi �

−1/α
i )

in Mp(R× (R\{0})) with respect to vague topology.

Proof. The proof of this proposition is a straightforward extension of Theorem 2.4 in
Davis and Resnick (1985) or Proposition 4.27 in Resnick (1987). Davis and Mikosch
(2008) also extend the results for an infinite-order MA space-time process given by Xt (sss) =
∑∞

i=0 ψi (sss)Zt−i (sss), sss ∈ [0,1]2, where {Zt }t∈Z is an i.i.d. sequence of random fields on

[0,1]2 with values in D2. They express the regular variation and point process convergence
and other relevant results in terms of ω̂ convergence of boundedly finite measures on a
space that is not locally compact. Because our state space E is locally compact, a bound-
edly finite measure is a Radon measure, and ω̂ convergence coincides with vague con-
vergence (Kallenberg, 1983). Therefore, an adaption of the results in Davis and Mikosch
(2008), i.e., Theorem 5.5, can be considered as the proof. n

As a consequence we obtain the following corollary.

COROLLARY 1. Consider model (4) and a nonnegative continuous function f on
R× (R\{0}) with compact support; then

n

∑
i=1

n

∑
j=1

f (εi j ,a−1
n Zi j ) →d

∞
∑
i=1

∞
∑
l=1

∞
∑

k=1
f (εikl ,cklδi �

−1/α
i ),

where ckl = 0 for k, l ≤ 0.

Proof. For f (x, y)I (|x | < M)I (|y| > δ), where f is a continuous function, weak con-
vergence follows if for all ε > 0,

lim
δ→0

lim
M→∞ limsup

n
P

(∣∣ n

∑
i=1

n

∑
j=1

f (εi j ,a−1
n Zi j )[1− I (|εi j | ≤ M)

×I (|Zi j | > δan)]
∣∣> ε

)
= 0 (A.1)
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and

∞
∑
i=1

∞
∑
l=1

∞
∑

k=1
f (εikl ,cklδi �

−1/α
i )I (|εikl | ≤ M)I (|cklδi �

−1/α
i | > δ)

→p

∞
∑
i=1

∞
∑
l=1

∞
∑

k=1
f (εikl ,cklδi �

−1/α
i ) (A.2)

as δ → 0 and M → ∞. n

PROPOSITION 2. Suppose that {Zi j } is given by (4) with {εi j } in DS(α). Let {Vi j }
be an i.i.d. sequence of random variables with finite mean such that for every i and j , Vi j
and Zi j are independent. Then for all δ > 0 and η > 0,

(i) limsup
n→∞

P

[
n

∑
i=1

n

∑
j=1

|Vi j ||a−1
n Zi j |ν I (|Zi j | ≤ δan) > η

]
≤ η−1c1E|V11|δν−α

for all ν > α,

(ii) limsup
n→∞

P

[
n

∑
i=1

n

∑
j=1

|Vi j ||a−1
n Zi j |ν I (|Zi j | > δan) > η

]
≤ c2δ−α P(|V11| > 0)

for all ν > 0 and constants c1 and c2. If, in addition, V11 has 0 mean and finite
variance and 1 ≤ α < 2, then

(iii) Var

[
n

∑
i=1

n

∑
j=1

Vi j (a
−1
n Zi j )I (|Zi j | ≤ δan)

]
→ 0

as n → ∞, and then δ → 0.

Proof of Theorem 1. First, we show that finite-dimensional distribution of Wn(·) con-
verges weakly. Here, we mimic the proof of Theorem 1 of Davis et al. (1992), omitting
some details. Let

Yni,nj (uuu) = u10a−1
n Zi−1, j +u01a−1

n Zi, j−1 +u11a−1
n Zi−1, j−1 +·· ·+upq a−1

n Zi−p, j−q .

By Corollary 1 it follows that

Wn(uuu; δ, M) =
n

∑
i=1

n

∑
j=1

[ρ(εi j −Yni,nj (uuu))−ρ(εi j )]I (|εi j | ≤ M, |Zi j | > anδ) →d ,

W (uuu; δ, M) =
∞
∑
i=1

∞
∑
j=1

∞
∑

k=1

[
ρ
(
εki j − (u10ci−1, j +u01ci, j−1 +u11ci−1, j−1

+·· ·+upq ci−p, j−q )δk�
−1/α
k

)−ρ(εki j )
]

I

× (|εki j | ≤ M, |(u10ci−1, j +u01ci, j−1 +u11ci−1, j−1

+·· ·+upq ci−p, j−q )�
−1/α
k | > δ).

It suffices to show that (A.1) and (A.2) hold with the function f (x, y) = ρ(x − y)−ρ(x).
Using the Taylor series expansion around εi j for each term of Wn(·) and Proposition 2, we
get the required result.
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Next, to see the tightness of Wn(·) we shall show

lim
δ→0

limsup
n→∞

P

[
sup

‖uuu−vvv‖≤δ
|Wn(uuu)− Wn(vvv)| > η

]
= 0.

Observe that by Lipschitz continuity of ψ we get∣∣ψ(εi j )−ψ(ξn
i j )
∣∣≤ k1|Yni,nj (uuu −vvv)|λ1 ,

which implies

|Wn(uuu)− Wn(vvv)| ≤
∣∣∣∣∣

n

∑
i=1

n

∑
j=1

Yni,nj (uuu −vvv)ψ(εi j )

∣∣∣∣∣+ k1

n

∑
i=1

n

∑
j=1

|Yni,nj (uuu −vvv)|λ1+1.

Now using Proposition 2 along with a modification of Proposition 1 we get

a−1
n

n

∑
i=1

n

∑
j=1

Zi−r, j−vψ(εi j ) = Op(1)

and

a−(1+λ1)
n

n

∑
i=1

n

∑
j=1

|Zi−r, j−v |1+λ1 = Op(1).

This completes the proof. n

The following lemma from Knight (1989, p. 276) is used to prove Theorem 2 (see also
Davis et al., 1992, Lem. 2.2).

LEMMA 1. Suppose that {Tn(·)} is a sequence of convex stochastic processes from Rd

to R and that for any k-tuple of vectors (u1, . . . ,uk),

(Tn(u1), . . . ,Tn(uk)) →d (T (u1), . . . ,T (uk)),

where the stochastic process T (·) has a unique minimum û. If ûn minimizes Tn(·), then
ûn →d û.

Proof of Theorem 2. We prove part (i) of the theorem. Because ρ(·) is convex, by
Lemma 1 it is enough to show weak convergence for the finite-dimensional distribution
(denoted by → f idi ). Let (φ̂1, φ̂2) be the M-estimator of (φ1,φ2) in model (1) and define
Xi j := Zi j −φ2 Zi, j−1 and Yi j := Zi j −φ1 Zi−1, j . Then Xi j = φ1 Xi−1, j +εi j , and Yi j =
φ2Yi, j−1 +εi j , which yields the nonstationary part Xi j = ∑i

k=1 εk j , assuming φ1 = 1, and

the stationary part Yi j = ∑ j
l=1 φ

j−l
2 εil . Also recall from before that εi j = εi j (φ1,φ2) and

observe that

εi j
(
φ1 +a−1

n n−1/2u1,φ2 +a−1
n u2

)= εi j (φ1,φ2)−a−1
n n−1/2u1 Xi−1, j −a−1

n u2Yi, j−1

+a−2
n n−1/2u1u2 Zi−1, j−1.

Thus, we shall minimize the function

Kn(u1,u2) =
n

∑
i=2

n

∑
j=2

[
ρ
(
εi j
(
φ1 +a−1

n n−1/2u1,φ2 +a−1
n u2

))−ρ
(
εi j (φ1,φ2)

)]
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=
n

∑
i=2

n

∑
j=2

[
ρ
(
εi j −a−1

n n−1/2u1 Xi−1, j −a−1
n u2Yi, j−1

+a−2
n n−1/2u1u2 Zi−1, j−1

)−ρ(εi j )
]
.

Notice that because ρ is a strictly convex function, the objective function g(φ1,φ2) in (2)
can be easily shown to be jointly strictly convex in φ1 and φ2. Therefore Kn(u1,u2) has a
unique minimum at

(u1,u2) = (√n an(φ̂1 −1),an(φ̂2 −φ2)
)
.

We break up the rest of the proof into two steps.

Step 1. First we demonstrate that the process Kn can be approximately decomposed into

two marginal convex processes K (1)
n and K (2)

n . The first process involves the marginal unit
root process X , whereas the second process involves the marginal stationary process Y ,
both defined as before. This decomposition makes the limit theory almost clear.

More precisely, we show

Kn(u1,u2) = K (1)
n (u1)+ K (2)

n (u2)+op(1), (A.3)

where

K (1)
n (u1) =

n

∑
i=2

n

∑
j=2

ρi j
(
a−1

n n−1/2u1 Xi−1, j
)

and

K (2)
n (u2) =

n

∑
i=2

n

∑
j=2

ρi j
(
a−1

n u2Yi, j−1
)
,

with ρi j (u) = ρ(εi j −u)−ρ(εi j ). We have

n

∑
i=2

n

∑
j=2

[
ρi j
(
a−1

n n−1/2u1 Xi−1, j +a−1
n u2Yi, j−1 −a−2

n n−1/2u1u2 Zi−1, j−1
)

−ρi j
(
a−1

n n−1/2u1 Xi−1, j
)]

= −
n

∑
i=2

n

∑
j=2

∫ a−1
n u2Yi, j−1−a−2

n n−1/2u1u2 Zi−1, j−1

0
ψ(εi j −a−1

n n−1/2u1 Xi−1, j − s)ds

and
n

∑
i=2

n

∑
j=2

ρi j
(
a−1

n u2Yi, j−1 −a−2
n n−1/2u1u2 Zi−1, j−1

)

= −
n

∑
i=2

n

∑
j=2

∫ a−1
n u2Yi, j−1−a−2

n n−1/2u1u2 Zi−1, j−1

0
ψ(εi j − s)ds.

Using the Lipschitz continuity of ψ , we get

n

∑
i=2

n

∑
j=2

∫ a−1
n u2Yi, j−1−a−2

n n−1/2u1u2 Zi−1, j−1

0
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× ∣∣ψ(εi j −a−1
n n−1/2u1 Xi−1, j − s)−ψ(εi j − s)

∣∣ds

≤ k1

n

∑
i=2

n

∑
j=2

∣∣a−1
n u2Yi, j−1 −a−2

n n−1/2u1u2 Zi−1, j−1
∣∣ ∣∣−a−1

n n−1/2u1 Xi−1, j
∣∣λ1

≤ k1 sup
2≤i≤n

∣∣∣uλ1
1 a−λ1

n

n

∑
j=2

Xλ1
i−1, j

∣∣∣op(1) →p 0

using Assumption A2 and noting that

sup
2≤i≤n

∣∣∣uλ1
1 a−λ1

n

n

∑
j=2

Xλ1
i−1, j

∣∣∣= Op(1).

Therefore,

Kn(u1,u2) = K (1)
n (u1)+

n

∑
i=2

n

∑
j=2

ρi j
(
a−1

n u2Yi, j−1 −a−2
n n−1/2u1u2 Zi−1, j−1

)+op(1).

Continuing in this manner we obtain

Kn(u1,u2) = K (1)
n (u1)+ K (2)

n (u2)+
n

∑
i=2

n

∑
j=2

ρi j
(−a−2

n n−1/2u1u2 Zi−1, j−1
)+op(1),

and finally because

a−2
n n−1/2

n

∑
i=2

n

∑
j=2

ρi j
(−u1u2 Zi−1, j−1

)= op(1)

we get (A.3).

Step 2. Now, by an argument similar to that in Theorem 2 of Knight (1989) it can be

shown that K (1)
n (u1) → f idi K (1)(u1), where

K (1)(u1) = −σu1

∫ 1

0

∫ 1

0
Sα(t1, t2)dW (t1, t2)+ γ

2
u2

1

∫ 1

0

∫ 1

0
S2

α(t1, t2)dt1dt2. (A.4)

Also, an application of Theorem 1 in Section 2 implies K (2)
n (u2) → f idi K (2)(u2), where

K (2)(u2) =
∞
∑
i=1

∞
∑
j=1

ρi j
(
u2φ

j−1
2 δi �

−1/α
i

)
.

Therefore, minimizing K (1)(u1) and K (2)(u2) with respect to u1 and u2, respectively, and
using Lemma 1 we obtain the desired result.

To prove the first statement, using the Taylor series expansion of K (1)
n (u1) around u1 = 0

we observe that

K (1)
n (u1) = −u1a−1

n n−1/2
n

∑
i=2

n

∑
j=2

Xi−1, j ψ(εi j )+ 1

2
u2

1a−2
n n−1

n

∑
i=2

n

∑
j=2

X2
i−1, j ψ

′(ε∗
i j ),
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where
∣∣∣ψ ′(εi j )−ψ ′(ε∗

i j )
∣∣∣ ≤ k2

∣∣∣u1a−1
n n−1/2 Xi−1, j

∣∣∣. Therefore, we can replace ψ ′(ε∗
i j )

by ψ ′(εi j ) because

u2
1a−2

n n−1
n

∑
i=2

n

∑
j=2

X2
i−1, j

∣∣∣ψ ′(ε∗
i j )−ψ ′(εi j )

∣∣∣

≤ k2u2
1a−2

n n−1
n

∑
i=2

n

∑
j=2

X2
i−1, j ×

∣∣∣u1a−1
n n−1/2 Xi−1, j

∣∣∣

≤ k2u3
1n−1/2

(
n−1

n

∑
i=2

a−3
n

n

∑
j=2

|Xi−1, j |3
)

→p 0

uniformly over u1 in compact sets, using the fact that

n−1a−3
n

n

∑
i=2

n

∑
j=2

|Xi−1, j |3 = Op(1).

Moreover, in the limit each ψ ′(εi j ) can be substituted by E
(
ψ ′(εi j )

)
. That is, we shall

show that

u2
1a−2

n n−1
n

∑
i=2

n

∑
j=2

X2
i−1, j

[
ψ ′(εi j )−E(ψ ′(εi j ))

]→p 0

uniformly over u1 in compact sets. Denote the set of all ordered pairs of positive integers
by I and define F = {(t1, t2) ∈ I : t1, t2 ≤ n} for a fixed and positive integer n. Denote

Ut =
t1

∑
i=1

t2

∑
j=1

(
c1 Xi−1, j +c2Yi, j−1

)
I (c1 Xi−1, j +c2Yi, j−1 ≤ M)

[
ψ ′(εi j )−E(ψ ′(εi j ))

]
for each t = (t1, t2) ∈ F and given constants c1 and c2. Let Ft be the smallest σ -field
making each εi j measurable, for 1 ≤ i ≤ t1 and 1 ≤ j ≤ t2. Then similar to Lemma 2.4 of
Bhattacharyya et al. (1997), it is easy to see that {Ut (n),Ft (n), t ∈ F} is a strong martingale
array (for the related details, see Walsh, 1986). Therefore, applying a weak law of large
numbers for martingales (Brown, 1971; McLeish, 1974) we get

n−1
n

∑
i=2

a−2
n

n

∑
j=2

X2
i−1, j I (a−2

n X2
i−1, j ≤ M)

[
ψ ′(εi j )−E(ψ ′(εi j ))

]→p 0.

The other term, the approximation error, is an op(1) term due to the truncation at M :

P

[∣∣∣∣∣n−1a−2
n

n

∑
i=2

n

∑
j=2

X2
i−1, j I (a−2

n X2
i−1, j > M)

[
ψ ′(εi j )−E(ψ ′(εi j ))

]∣∣∣∣∣> δ

]

≤ P

[
max

1≤i, j≤n
a−2

n X2
i−1, j > M

]
→ 0,

as n → ∞ first and then M → ∞, because if a−2
n X2

i−1, j ≤ M for each i, j ; 1 ≤ i, j ≤ n,

then the term inside | · | cannot be greater than δ; i.e., it equals zero. Thus K (1)
n (u1) → f idi

K (1)(u1), with K (1)(u1) as given in (A.4). n
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